要 約

スラリーインジェクタを普及推進するために、スラリーの土中施用及び施用量が収量、作物及び土壌性状に及ぼす影響を検討した。 イタリアンライケ ラス及びトウモロコンを 2 年連作し、スラリー注入量の影響を検討した結果、スラリー注入量 4.4~13.1t/10a の範囲では、スラリー注入量が少ないほど乾物収量が高い傾向を示した。また、酪農家のイタリアンライケ ラス圃場を使ったスラリー散布方法の実証試験では、スラリーの施用方法(土中施用と表面散布)、施用量による影響は見られなかった。

1. 目 的

悪臭防止を目的として、家畜ふん尿をスラリーンジェクタにより土地還元する技術が普及しつつある。しかし、この技術は悪臭防止にはある一定の効果はあるものの、スラリー土中施用を前提とした飼料作物の栽培技術は確立されていない。環境保全型の自給飼料栽培技術であるスラリーインジェクタを普及推進するために、スラリー土中施用が飼料作物に及ぼす影響を検討した。

2. 方 法

- (1) スラリー注入施用試験
- ア. 試験場所;栃木県畜産試験場(芳賀郡芳賀町)
- イ. 試験期間;平成7年9月~平成9年9月
- ウ. 供試材料
 - (1). 草種; イタリアンライグラス (タチワセ)、トウモロコシ (XL61)
 - ②. スラリー;自然流下式酪農家排出スラリー
 - ③. 堆肥; 畜産試験場生産堆肥(カガクズ使用肉牛 ふん尿及び鶏糞及び豚ぷん発酵堆肥)。
 - 4). 試験区

スラリー注入多肥区、中肥区、少肥区及び堆肥区の 4区を設け、イタリアンライグラスとトウモロコンを2年連作した。 区の大きさは36 m² (4×188m) の4 反復とした。 エ. スラリー施用法、施肥量及び播種方法

スラリーは、播種1~3週間前にステリーンジェクタ (スター農機 ASJ5000、タンク容量3750L、注入爪数5本、作業幅2m、間隔40cm)を用い、土中12~15cmに注入した。注入量は、施用前に、テスト走行を実施し、走行時間当たりの注入量を算出し、試験区毎に調整した。堆肥区は、1アール当たり300kgの堆肥を表面散布した。

施肥量は、 $イタリアンライグラスでN\cdot P_2O_5\cdot K_2OA$ 1. 2Kg/a、トウモロコシで各1. <math>5Kg/aとした。播種は、イタリ 7ンライグラスの場合、10 <math>7-ル当たり 3Kgを散播し、トウモロコシの場合、<math>2-ンプランタにより 10 7-ル当たり $650\sim700$ 本を目安に播種した。各年度のスラリ-施用及び播種時期を表 1 に示した。

才. 調査項目

収量特性

表1 各年度における播種作業時期(スラリー注入施用試験)

試験年度	イタリアン	ライグ・ラス	トウモロコシ			
	スラリー施用	播種	スラリー施用	播種		
平成7年度	9月19日	10月13日	_	_		
平成8年度	10月23日	10月28日	6月18日	6月27日		
平成9年度	9年度		5月6日	5月27日		

(2) 実証試験

- ア. 試験場所;酪農家圃場2カ所
 - ①. 試験地 I; 芳賀郡芳賀町、多湿黒ぼく土、

転換焊

- ②. 試験地Ⅱ;芳賀郡茂木町、黒ぼくグライ土
- イ. 試験期間;平成7年9月~8年5月

ウ. 供試材料

①. 草種;試験地Ⅰ;イタリアンライグラス(グリーンファスト)、試験地Ⅱ;イタリアンライグラス(NSコモン)

②. スラリー;試験地I;自然流下式酪農家排出スラリ

-、試験地Ⅱ;酪農家固液分離液

工. 試験区

スラリー注入多肥区、少肥区、スラリー表面散布多肥区及び少肥区の4区を設けた。区の大きさは、試験地Iが336 $m²(4<math>\times$ 84m)、試験地Iが380 $m²(4<math>\times$ 95m) とし、各々2 反復した。

オ. スラリー施用法、施肥量及び播種方法

①. 試験地 I

スラリーの注入及び表面散布は、播種 1~3 週間前にスラリーシジェクタ(スター農機 ASJ5000、タンク容量 3750L、注入爪数5本、作業幅2m、間隔40cm)及びスラリースプレッタ(タンク容量 1600L)を用い、土中 12~15cmに注入及び表面散布した。注入量は、タンク容量から概算で算出した。

施肥及び播種は農家慣行法のままとし、無施肥、 播種量3.5Kg/10aとした。

②. 試験地Ⅱ

スラリーの注入及び表面散布は、播種 1~3 週間前にスラリーンジェクタ (スター農機 TSJ2500 ケンク容量 2500L、注入爪数 2 本、作業幅及び間隔 1.5m) 及びスラリースプレッタ(タンク容量 2500L)を用い、土中約 20cm に注入及び表面散布した。注入量は、タンク容量から概算で算出した。施肥及び播種は農家慣行法のままとし、追肥窒素 2.6Kg/10a(翌春)、播種量3.5Kg/10aとした。

才. 調查項目

収量及び作物、土壌性状

(1) スラリー注入施用試験

(タリアンライケ・ラス 1 年目の成績を表 2 に示した。堆肥区は、施肥不備により成績を除外した。ステリーの注入量は、走行速度により調整し、S I 多肥区、S I 中肥区、S I 少肥区各々13.1、7.9、4.4t/10aとなった。草丈は、ステリーの注入量が多くなるにつれ高くなる傾向を示し、乾物収量では、逆に、ステリー注入量が多くなるにつれ少なくなる傾向を示した。

トウモロコシの1年目の成績を表3に示した。スラリーの注入量は、SI多肥区、SI中肥区、SI少肥区各々10.7、8.7、6.6t/10aとなった。乾物収量は、堆肥区、SI少肥区が高く各々146、147Kg/aであった。部位別の収量では、子実収量には各区差がなく、茎葉収量に差が見られた。/クリアンライグ・ラス2年目の成績を表4に示した。スラリーの注入量は、SI多肥区、SI中肥区、SI少肥区各々13.0、8.3、6.3t/10aとなった。乾物収量は、1年目と同様にスラリー注入量が多くなるにつれ少なくなる傾向を示した。トウモロコシの2年目の成績を表4に示した。

(2) 実証試験

試験成績を表5に示した。試験地I、試験地II のいずれの試験においても、スラリーの施用方法、施用量による差は認められなかった。乾物収量は、いずれの試験区においても80Kg/a以上の収量が得られ概ね良好であった。

表2 スラリー注入試験におけるイタリアンライグラスの収量(平成8年;1年目)

試験	区	乾物率(%)	草丈(cm)	収量(Kg/a)				
p-1 19/		+4127 (10)	4× (cm)	生 草	乾 物			
堆 肥	区	_	_	_	_			
SI多	肥区	12. 2	95.0	728	88. 9			
SI中	肥区	12.9	94.0	729	94. 2			
SI少	肥区	14.6	89. 2	706	101. 9			

注) 堆肥区は、施肥不備により成績を除外した。 S I 多肥区; (スラリー注入多肥区):13.1t/10a S I 中肥区(スラリー注入中肥区):7.9t/10a、S I 少肥区(スラリー注入少肥区):4.4t/10a

表3 スラリー注入試験におけるトウモロコシの収量(平成8年:1年目)

試験区注)	フテージ	稈長	生 収	量(Kg	g/a)	乾物山	仅量(Kg	g/a)
四次区(土)	\) _\	(cm)	茎葉	子実	計	茎葉	子実	計
堆 肥 区	黄熟初	198	425	141	566	85	61	146

SI多肥区	黄熟初	200	410	134	544	77	59	136
SI中肥区	黄熟初	199	414	140	554	81	61	142
SI少肥区	黄熟初	209	421	141	562	86	61	147

注)S I 多肥区; (スラリー注入多肥区) : 10. 3t/10a、S I 中肥区(スラリー注入中肥区) : 8. 7t/10a、S I 少肥区(スラ リー注入少肥区) : 6. 6t/10a

表4 スラリー注入試験におけるイタリアンライグラスの収量(平成9年;2年目)

試験区注)	乾物率(%)	草丈 (cm)	収 量(Kg/a) 生草 乾物		耐倒伏牲 1(無)~9(甚)
堆 肥 区	12.7	91.9	427	54. 1	2
SI多肥区	11.8	91.7	432	50.8	6
SI中肥区	11.3	93.5	478	53. 7	5
SI少肥区	11.9	93.8	494	58. 5	4

注) S I 多肥区; (スラリー注入多肥区) : 13. 0t/10a、 S I 中肥区(スラリー注入中肥区) : 8. 3t/10a、 S I 少肥区(スラリー注入少肥区) : 6. 3t/10a

表 スラリー注入試験におけるトウモロコシの収量(2年目)

試験区注)	ステーシ゛	稈長	生 収	量(Kg	量(Kg/a)		乾物収量(Kg/a)			
	\) -\	(cm)	茎葉	子実	計	茎	葉	子実	計	
堆 肥 区	黄熟中	253	493	186	680		91	99	190	
SI多肥区	黄熟中	226	521	179	700		111	96	208	
SI中肥区	黄熟中	234	498	171	669		98	94	191	
SI少肥区	黄熟中	221	524	198	722		102	108	209	

注) S I 多肥区; (スラリー注入多肥区) : 10. 3t/10a、S I 中肥区(スラリー注入中肥区) : 8. 7t/10a、S I 少肥区(スラ リー注入少肥区) : 6. 6t/10a

表5 実証試験におけるイタリアンライグラスの収量

	Ī	試 験	地 I1)		試 懇) 地]	II 2)		
試験区注)	乾物率	率 収量(Kg/a)		草丈	乾物率	収量(Kg/a)		
	%	生草	乾物	сш	%	生草	乾物		
SS多肥区	10.9	758	82.5	96. 1	13.6	636	85. 3		
SS少肥区	10.4	769	80.6	94.0	14. 4	623	88. 1		
SI多肥区	10.4	789	81.4	91.5	13.6	636	86.6		
SI少肥区	11.6	788	92.6	94.7	13. 7	630	85.9		

注) S S 多肥区(スラリー表面散布多肥区)、S S 少肥区(スラリー表面散布多肥区) S I 多肥区(スラリー注入多肥区)、S I 少肥区(スラリー注入少肥区) 1) 多肥区:6t/10a、少肥区:10~11t/10a、2) 多肥区:8t/10a、少肥区:12~13t/10a